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IMAGE FORMATION
Machine perception

2



Let’s design a camera!

• Idea 1:  put an object in front of a film...

• Do we get a good image of the object?

Object Film
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Let’s design a camera!

• Add a punctured barrier that blocks most of the rays 

• Significantly reduces blurring

• The „hole“ is known as aperture

Object FilmBarrier
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A pinhole camera

• Earliest and remarkably correct written description: 

~500 BC Mohist canon (ancient Chinese texts)

• A simple standard camera model

• A box with a small aperture

• Works in practice

aperture image plane
virtual image3D object
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A pinhole camera: a taste of geometry

Goriščna razdalja

(angl., focal length)

z

y

How large will the 
image of this 
object be on the 
film? 

Perspective projection 
equation
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Effects of the aperture size

• Too large – multiple directions averaging, 

resulting in a blurred image.

• Too small – light starts diffracting, 

causing blurred image.

• In general small number of rays hit the 

film, which results in a dark image.

• How do we deal with this?

Vir: Forsyth & Ponce7



Let’s add a lens...

• The lens focuses light to film

• The rays that travel through the center do not refract.

Slide credit:: Steve Seitz8



Let’s add a lens...

• The lens focuses light to film

• The rays that travel through the center do not refract.

• Points at particular distance remain in-focus.

• Points at other distances are blurred.

The bluring

disk

Slide credit:: Steve Seitz10



• Thin lens: Points at different depths get focused at different depths of 

image plane. 
(Real-world lens have a greater depth of field)

• Depth of field: distance between image planes at which the blurring 

effect is sufficiently small..

Focus and the depth-of-field

Sharp

Slide credit:: Steve Seitz

Blured

Would be sharp

here.
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• Effects of aperture on the depth-of-field

• Small aperture increases the depth-of-field.

• But due to reduced illumination we have to increase the exposure time.

Focus and the depth-of-field

Slide credit:: Steve Seitz12

http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f32.jpg
http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f5.jpg


f

Field of view

Slide credit: A. Efros

f

• Field of view (FOV)                  is an angular measure of space perceived by the 

camera.

• Larger focal length → Smaller field of view

f
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Field of view

• Small f results in wide-angle  image 

(Large field of view) 

• More 3D points project to the  sensor.

• Large f results in a telescopic image

(small FOV)

• Smaller portion of 3D scene is 

projected to the sensor.
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Field of view and focal length

Large FOV, small f 

Camera close to the car

Small FOV, large f

Camera far away from the car

Sources: A. Efros, F. Durand15



Chromatic aberration

• Different wave-lengths refract at different angle and focus at slightly 

different distances:

Close to image center Close to image edge
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Spherical aberration

• Spherical lenses do not focus the light perfectly.

• Rays close to lens edge focus closer than those at the center.

http://www.dofpro.com/sagallery.htm

http://photographylife.com/what-is-spherical-aberration

Without 
aberration

With 
aberration
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Vignetting
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Radial distortion

• Due to lens imperfections or fisheye.

• Most apparent at the edge of the image.

Without distortion Barrel distortion
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Digital image

• Instead of film, use matrix (array) of sensors.

• Discretize image into pixels. 

• Quantize light into intensity levels.

Vir slike: Michael Black20



Sensor: Camera

Near-infrared light

Visible light

Far-infrared light

Terahertz light

http://userweb.elec.gla.ac.uk/d/dpaul/terahertz.html

Electromagnetic spectrum
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Visible light cams: CCD vs CMOS

• In both: Photons cause charge on each sensor „cell“.

• CCD reads out the charge (FIFO) serially and digitizes.

• CMOS performs digitization on each cell separately.

• CCD used to deliver better images, but CMOS technology has progressed.

• CMOS is cheaper to produce and is thus wide-spread.

Charge coupled device (CCD) Complementary metal–oxide–semiconductor (CMOS)

22



Color perception in digital cameras

Vir: Steve Seitz

Bayer sensor
In classical design, we cannot read out R, 
G and B channel at a single pixel.

Why twice as many greens compared
to blue and red?

Luminance is mostly determined by
the green values.

Human visual system much more 
sensitive to changes in intensity than in 
chroma (color).
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Color perception in digital cameras

De-mosaicking: The missing 
color channels at a pixel 
need to be interpolated!

What you see Your camera sees

http://www.cambridgeincolour.com/tutorials/camera-sensors.htm

Missing green!
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Color perception : Foveon X3

Vir: M. Pollefeys

http://en.wikipedia.org/wiki/Foveon_X3_sensorhttp://www.foveon.com/article.php?a=67

• CMOS-based sensor.

• Based on the fact, that red, green and blue color penetrate the silicon at different depths.

Better image quality

Foveon X3Bayer-like
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From camera to perception

• How does a human perceive the bottles, plates, forks,..., 

using only brightness?

• How do we perceive depth?

• Can a computer program do that?

matrix of „numbers“

3D

Lens Sensor

2D
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IMAGE PROCESSING 1
Machine perception
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Binary images

• Only two possible gray levels

• Foreground vs. background

Slide credit: Kristen Grauman28



Usage: Machine vision, OCR, etc.

R. Nagarajan et al. “A real time marking inspection scheme for semiconductor industries“, 2006

Source: Bastian Leibe

OCR on documents

Hand written numbers

29



Usage: Medical imaging

Source: D. Kim et al., Cytometry 35(1), 1999

Source: Bastian Leibe30



Use case: Count the “round” cells

Generate hypotheses Classify each region
into a “round” and

“not round”

…

…

…

Keep “round” regions

Localize, Describe, Classify
31



Localize: Sequence of processing steps

• Convert gray image to a binary image

• Thresholding

• Clean binary image

• Morphologic filtering

• Extract individual regions

• Connected components

… then describe each localized region and classify

32



IMAGE THRESHOLDING
Machine perception
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Thresholding

• Transform an image into a Binary Mask

• Various approaches

• Apply a single threshold

• Apply two thresholds

• A general view: apply a classifier

𝐹𝑇 𝑖, 𝑗 = ቊ
1, if 𝐹 𝑖, 𝑗 ≤ 𝑇
0, otherwise

 
 



 

=
otherwise  ,0

, if   ,1
,

21 TjiFT
jiFT

 
 


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=
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Object/background separation

Source: Bastian Leibe34



A simple example: Bimodal histogram

Ideal case:
bright object on 
dark background.

A more realistic noisy 
image.

fr
eq

u
en

cy

Grey level0 255
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A not so simple example...

• What to do here?

• Generally thresholding is a difficult problem

• Domain knowledge helps a great deal.

• E.g., the portion on letters on a page.

• E.g., size of the structure we want to detect...

Source: Shapiro & Stockman

Multiple modesSeparate modes Overlapping modes
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Global binarization [Otsu ’79]

• Find a threshold T, that minimizes  intensity variances within classes separated by T:

• This equals to maximization of between class variance between:

Source: Bastian Leibe

Otsu, N (1979), "A threshold selection method from gray-level histograms", IEEE SMC 

T
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http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=4310076


Otsu’s Algorithm

For threshold value T

1. Separate the pixels into two groups by intensity threshold T

2. For each group get an average  intensity and calculate                .

Select the T*, that maximizes the variance:

][maxarg 2 (T)σT betweenT=

38

Used in several thousand modern algorithms in particular in medical imaging



State-of-the-art: Generalization of Otsu (CVPR2020)

• Recently, Otsu’s method revisited:

• Formulate the problem as fitting 2 Gaussians

to the histogram with priors on means and 

variances (Bayesian view)

• Efficiently computed by a single pass

through the histogram (like Otsu)

• Outperforms all single-pass algorithms 

and all deep learning algorithms on the 

text binarization benchmark

39

Barron, J.T., A Generalization of Otsu’s Method and Minimum Error Thresholding, CVPR2020 ; link to video

https://arxiv.org/pdf/2007.07350.pdf
https://www.youtube.com/watch?v=rHtQQlQo1Q4


Local binarization [Niblack’86]

• Estimate a local threshold in neighborhood W:

with k [-1,1] set by user.

• Calculate the threshold separately for each pixel.

WWW kT  +=

TW

Effect:

W
W

......

......

Source: Bastian Leibe

Niblack, W (1986), An introduction to Digital Image Processing, Prentice-Hall
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Examples of thresholding

Original Local (Niblack)Global (Otsu)
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Additional improvements

• The shade in documents is often smooth...

Try to model it by a polynomial!

Source: S. Lu & C. Tan, ICDAR’07

Original

Binarized resultShadow compensation

Fitted surface
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Comparison of results

Original image Global (Otsu)

Polynomial
+ global

Local (Sauvola)

Vir: S. Lu & C. Tan, ICDAR’07 43



CLEANING THE IMAGE
Machine perception
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Cleaning the binary image

• Thresholded image still includes noise

• Require post-processing to remove artefacts

• Morphological operators

• Remove isolated points and small structures

• Fill holes

Source: Bastian Leibe47



Dilation: A sneak peak preview

• Dilate the regions of „white“ pixels

• Increases the size of the structures

• Fills holes in regions

Before dilation After dilation
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Erosion: A sneak peak preview

• Erode the  regions of „white“ pixels

• Reduce the size of structures

• Remove bridges, branches, noise

Before erosion After erosion
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Central to morphology: Structuring element (SE)

• Can be any shape and content:

• Fit: All “1” pixels in SE cover “1”

pixels in the image.

• Hit: Any “1” pixels in SE cover “1”

pixels in the image.

Origin of the SE SE placed on image at (2,2)
0     1     2      3     4      5     6 …

0
     1

     2
      3

     4
      5

    …

Image curtesy: Brian Mac Namee 50



Fitting & Hitting

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 1 0 0

0 1 1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0

B C

A

0 1 0

1 1 1

0 1 0

Structuring 

Element 

Fit / Hit?
A: F=1, H=1
B: F=1, H=1
C: F=0, H=1

Slide curtesy: Brian Mac Namee

Fit : All “1” elements in SE cover 1
Hit: Any “1” element in SE cover 1
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Erosion

• Erosion of image 𝑓 by structuring element 𝑠 is given by g = 𝑓𝑠.

• The structuring element s is positioned with its origin at (𝑥, 𝑦) and the 

new pixel value is determined using the rule:

fits1 if  
( , )

0 otherwis

 

e

s f
g x y


= 


Fit: All “1” pixels in SE cover “1”
pixels in the image.

SE placed on image at (2,2)
0        1       2        3       4       5       6 …

0
       1

       2
       3

       4
       5

    …

0 1 0

1 1 1

0 1 0

𝑠
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Erosion Example

Original Image Processed Image With Eroded Pixels

Slide curtesy: Brian Mac Namee

Fit :All 1 in SE covered in image
Structuring Element
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Erosion Example

Structuring Element

Processed Image With Eroded Pixels

Fit :All 1 in SE covered in image

Original Image

Eroded away
(pixels removed)

54Slide curtesy: Brian Mac Namee



Dilation

• Dilation of image 𝑓 by structuring element 𝑠 is given by g = 𝑓 ⊕ 𝑠.

• The structuring element s is positioned with its origin at (𝑥, 𝑦) and the 

new pixel value is determined using the rule:

hits1 if  
( , )

0 otherwis

 

e

s f
g x y


= 


0 1 0

1 1 1

0 1 0

𝑠
SE placed on image at (2,2)

0        1       2        3       4       5       6 …

0
       1

       2
       3

       4
       5

    …

Hit: Any “1” pixels in SE cover “1”
pixels in the image.
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Dilation Example

Original Image Processed Image

Structuring Element
Hit: Any 1 in SE covered in image 
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Dilation Example

Structuring Element

Processed ImageOriginal Image

Dilated region
(pixels added)

Hit: Any 1 in SE covered in image 
57



Effects of erosion and dilation

Original

Dilation by a round
structuring element.

Erosion by a round
structuring element.

Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/
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Combined operations: Opening

• Definition

• Apply erosion then dilation

• Effect:

 Removes small objects,

preserves rough shape.

Image Source: R.C. Gonzales & R.E. Woods59



Effects of opening

• Can filter out structures by selecting

the size of structuring element.

Original

Opening by a small
structuring element

Thresholded Opening by a large
structuring element

Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/60



Effects of opening

• Choose the structure in image by choosing the shape of the structuring 

element.

Opening by a round

structuring element
Original image

Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/61



Combined operations: Closing

• Definition

• Apply dilation then erosion

• Effect

 Fill holes, preserves

the original shape.
Image Source: R.C. Gonzales & R.E. Woods62



Effects of closing

• Fill holes in thresholded image

(eg., reflections)

Original Thresholded Closing by a round
structuring element

Image Source: http://homepages.inf.ed.ac.uk/rbf/HIPR2/

The size of structuring 
element determines the 
maximal size of  holes 
that will be  filled.

63



Example: opening + closing

Original image Opening Closing

DilatedErode

Structuring
element

Image Source: R.C. Gonzales & R.E. Woods64



Morphological operators in OpenCV

• Main operations

• Dilation (OpenCV: cv2.dilate)

• Erosion (OpenCV: cv2.erode)

• Several important combinations

• Opening (OpenCV: cv2.morphologyEx(img,cv2.MORPH_OPEN, kernel) )

• Closing (OpenCV: cv2.morphologyEx(img,cv2.MORPH_CLOSE, kernel))

• Boundary extraction

• Much more available

(see help)

Source: Bastian Leibe

Examples of structuring elements:

65



LABELLING REGIONS
Machine perception
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Connected components for labeling

• Goal: find separate connected regions

Sources: Shapiro & Stockman, Chandra

Binary image connected components
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Examples of connected components

Source: Pinar Duygulu 68



Connectivity

• Determines which pixels are considered neighbors.

4-neighborhood 8-neighborhood

Source: Chaitanya Chandra 69



• Process image from left to right, from top to bottom:
1.) If the current pixel value is 1

i.)  If only one neighbor (left or top) is 1,

copy its label.

ii.)  If both neighbors are 1 and have same label,

copy that label.

iii.) If they have different labels

− Copy label from the left.

− Update the table of equivalent labels.

iv.) Otherwise form a new label.

• Relabel with the smallest equivalent labels.

Slide credit: J. Neira

Sequential connected components
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Example SCC: 8-connectivity
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Example SCC: 8-connectivity

(Update equivalency table {2,5})
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Example SCC: 8-connectivity

Equivalency table
First pass: label

Second pass: apply equivalences

I==2
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REGION DESCRIPTORS
Machine perception

Classify each region

…

74



Simple region descriptors

• A region can be detected using the connected components.

• How to describe it?

• Some examples: Matlab: regionprops

(Easy to come up with your own)
75



Require a level of invariance (App dependent)

• Ideal descriptor will map:

• Two images of the same object close-by in feature space.

• Two images of different objects to points far between each other.
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Task: Detect round cells

Classify each region

…

Trained classifier

round

not round
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Summary: Binarization

• Pros

• Fast, simple to store

• Simple techniques

• Works in constrained setups

• Cons

• Difficult to get „clean“ shapes

• Many real-world scenarios contain noise

• Often too coarse representation

• Not robust in changes of 3D view changes

Slide credit: Kristen Grauman78



Python code

80

import numpy as np
import matplotlib.pyplot as plt
import cv2

img_bgr = cv2.imread('C:/Users/matej/Documents/Articles/Lectures/Machine Perception/1_Image processing 1/code/matlab/coins.jpg')
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

plt.figure(1)
plt.imshow(img_rgb)
plt.show()

a_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
plt.imshow(a_gray, cmap='gray')
plt.show()

a_bin = a_gray<170
a_bin = a_bin.astype(np.uint8)

plt.imshow(a_bin, cmap='gray')
plt.show()

kernel = np.ones((5,5),np.uint8)

a_close = cv2.morphologyEx(a_bin, cv2.MORPH_CLOSE, kernel)

plt.imshow(a_close, cmap='gray')
plt.show()

ret, labels = cv2.connectedComponents(a_close)

plt.imshow(labels==1, cmap='gray')
plt.show()

mask = labels==1
mask = mask.astype(np.uint8)

img_masked = cv2.bitwise_and(img_rgb, img_rgb, mask=mask)

plt.imshow(img_masked, cmap='gray')
plt.show()
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